Aggregate Planning Technique at a Mixed Seasonal Beverages Production Plant, A Case Study

Mahmoud A. Hinnawi*

Abstract

Sizable proportion of production organizations are interested in adopting advanced production planning methods. Planners use aggregate planning to achieve a production plan that will effectively utilize the organization's resources to satisfy expected demands. The production planning of mixed seasonal products is usually a complex assignment. A beverages plant is producing three kinds of beverages with variable demand month-wise according to seasons change. As a result, over-time is needed through some months, while, under-time is happening through others. In this paper, cost analysis is conducted for the present production plan, then operations research approaches were used to create three models to generate a better production plan for that company with respect to cost. These models include transportation model, linear program model, and a dynamic model. A comparison is made between the three models to investigate the suitability in terms of cost reduction and adoptability.

The LP model seems more adequate for this plant with an encouraging cost reduction rate. The study takes into account, among others, the costs of overtime/under-time, hiring /firing, inventory holding cost, etc. Finally, this study suggests to adopt production plan that resulted from the linear production model in this study with 6.23% cost reduction among current production plan. All basic financial data used in calculations were provided by the manufacturer without any interfere from the researcher.

Keywords: Aggregate Production Planning, Mixed Seasonal Products, Operations Research.

[^0]
التخطيط الكلي في مصنع إنتاج مشرويات موسمية مختلطة، دراسة حالة

د. محمود الحناوي*

(الملخص

تهتم نسبة كبيرة من المنظمات الإنتاجية في اعتماد أساليب تخطيط الإنتاج المتقدمة. يستخدم المخططون منهج التخطيط الكلي لتحقيق خطة الإنتاج التي سوف تستخدم على نحو فعال موارد المنظمة لتلبية الطلب المتوقع. عادة تكون عملية تخطيط الإنتاج في المنظمات ذات المنتجات الموسمية المختلطة مهمة معقدة. يُتتج مصنع مشرويات غازية ثلاثة أنواع من المشرويات لها معدلات طلب شهري متغير وفقاً لتغير الفصول. ونتيجة لنلك، هناك حاجة إلى ساعات عمل إضافية خلال بضعة أشهر، بينما، يحدث فائض في ساعات العمل خلال أشهر أخرى. في هذه الورقة، جرى تحليل لتكاليف الخطة الإنتاجية الحالية ثم تم استخدام مفاهيم بحوث العمليات لتوليد ثلاثة اقتراحات من أجل خطة إنتاج أفضل لتلك الشركة فيما يتعلق بالتكاليف. تشمل هذه النماذج: نموذج النقل، نموذج البرمجة الخطي، ونموذج ديناميكي. ثم أجريت مقارنة بين النماذج الثلاثة للتحقق من مدى الملاعمة من حيث خفض اللتكاليف وقابلية التطبيق العطلي. تبين أن الخطة المقترحة وفق نموذج البرنامج الخطي أكثر ملاءمة لهذا المصنع مع نسبة خفض تكاليف مشجعة قـرها 6.32\% مقارنة مع خطة الإنتاج الحالية. وقد تم الحصول على كل البيانات المالية المستخدمة في الحسابات من الثركة المصنعة دون أي تدخل من الباحث.

الكلمات المفتاحية: تخطيط الإنتاج الكلي، المنتجات الموسمية المختلطة، بحوث العمليات.

1. Introduction:

When sales vary significantly according to season, the manufacturer makes special provisions to integrate the acquisition of raw materials and labor with an effective production schedule which satisfies customers' requirements. The recommended procedure is called aggregate planning, and many algorithms produce a good definitive solution.

Aggregate planning involves planning 6 months and more in the future, whereas detailed planning is concerned with the shorter term (weeks or months) ${ }^{[1]}$. Many authors have suggested different solutions to use aggregate planning in manufacturing organizations in order to improve systems utilization. To achieve this, some authors used transportation models ${ }^{[2]}$, others suggested a nonlinear programming model
for a multi-product multi-site aggregate production planning ${ }^{[3]}$, others suggested genetic algorithms to solve a model for two phase production systems ${ }^{[4]}$, also linear programming and fuzzy logic were used to propose to solve aggregate planning problems ${ }^{[5][6]}$.

There are numbers of important informational needs for effective aggregate planning. First, the available resources over the planning horizon must be known, including facilities. Also, a forecast of expected demand must be available. Finally, planners must take into account any policies regarding changes in employment levels; figure (1) and table (1) list the major resources and costs that must be taken into account. 7

Fig. 1 Required Inputs to the Production Planning System.
Table 1. Major resources and costs.

RESOURCES	COSTS
Work force production rates	Inventory carrying cost
Facilities and equipment	Backorders
Demand forecast	Hiring/firing
Policy statements on work force changes	Overtime
Subcontracting	Inventory changes
Inventory levels changes	Quality costs
Backorders	

2. Importance Of Aggregate Planning :

Beverages industries are engaged in the production of 'Mixed Seasonal' products, which means big fluctuations in utilizing resources and that lead to considerable drops in returns and profits. In order to reduce the production costs and increase profit, it is mandatory to utilize existing plant capacity and resources efficiently.

Such targets compel to improve production planning technique or in other words to implement optimal (mathematical) Aggregate Production Technique which consider decision variables as: production rate, inventory levels, back logs, capacity

Demand data at the company is maintained brand wise for twelve months as shown in table (2).
change, hiring and lay off, over-time, under time, change over/month. Significant savings can be realized by correctly modeling and solving the aggregate production-planning problem ${ }^{[8]}$.

3. Describtion Of The Current
 Production Plan And Costs:

The company is engaged in the production of three mixed seasonal products which are: Cola, Lemon, and Orange tastes.

The regular working hours in general shift are eight hours per day ($8 \mathrm{hr} /$ day).

Available regular plant hours per year $=$ $2064 \mathrm{hr} / \mathrm{yr}$

Available overtime plant hours per year $=$ $2564 \mathrm{hr} / \mathrm{yr}$

Table 2. Aggregation of Beverages Demand

\#	Month	Demand of Cola	Demand of Orange	Demand of Lemon	Aggregate Demand
		(LTR)	(LTR)	(LTR)	(LTR)
$\mathbf{1 .}$	Feb.	14000	8750	12250	35000
$\mathbf{2 .}$	March	16000	10000	14000	40000
$\mathbf{3 .}$	April	28000	17700	24675	70375
$\mathbf{4 .}$	May	34000	21450	29950	85400
$\mathbf{5 .}$	June	46000	28950	40675	115625
$\mathbf{6 .}$	July	46000	29025	40675	115700
$\mathbf{7 .}$	Aug.	32840	20721	29039	82600
$\mathbf{8 .}$	Sept.	25990	16458	23054	65500
$\mathbf{9 .}$	Oct.	23982	15207	21311	60500
$\mathbf{1 0 .}$	Nov.	16792	10705	14903	42400
$\mathbf{1 1 .}$	Dec.	12500	7912	11038	31450
$\mathbf{1 2 .}$	Jan.	9610	3660	8955	22225
	Total	305714	190538	270525	766775

In figure (2) the demand data with related costs is presented in table depicts seasonal trends, the peak period starts from May to August and the slack period from December to February.

The month-wise production plan currently adopted at the plant along

Fig. 2. Month- wise Demand on Products.

4. Optimizing Methods

Three commonly used optimizing techniques in aggregate planning are adopted in this paper, which are ${ }^{[\mathrm{ix]}]}$:

1. Transportation Model.
2. Linear Programming
3. Dynamic Programming.

4.1 Transportation Model.

Assuming cost and variable relationships are linear and demand can be treated as deterministic; then more easily formulated transportation method is applied. It can be also termed as period model since it relates production demand to production capacity by periods. Let:
$\mathrm{C}_{\mathrm{t}}=$ Unit production cost in regular working hours.
$\mathrm{P}_{\mathrm{t}}=$ Production (in hours) in regular time.
$\mathrm{C}_{\mathrm{t}}{ }^{\prime}=$ Unit production cost in over time.
$\mathrm{P}_{\mathrm{t}}{ }^{\prime}=$ Production (in hours) in over time.
$\mathrm{h}_{\mathrm{t}}=$ Inventory carrying cost per unit held from period ' t ' to ' $t+1$ '
$\mathrm{I}_{\mathrm{t}}=$ On-hand inventory at the end of period ' t '
$\mathrm{B}_{\mathrm{t}}=$ Production capacity of period ' t '
$D_{t}=$ Forecasted demand (in Bottles) in period 't'
$\mathrm{NI}_{\mathrm{t}}=$ Net inventory at the end of any period.
$\left(\mathrm{I}^{+}\right)=$Inventory.
$\left(I^{-}\right)=$Back orders.

Table 3. The month-wise production plan currently adopted at the plant along with related costs.

\#	Month	Agg. Demand [LTR]	Agg. Prod. [LTR]	Cost to Produce [SL/LTR]	Invt. Carrying Cost [SL/LTR]	On Hand Invt. [LTR]	Cost of REG. Labor Hours [SL/hr]	Reg. Labor Hours (Hr]	Cost of Labor In.0.T [SL/hr]	Over Time $[\mathrm{Hr}]$	Cost to Inc. one Lab. Hour [SL/hr]	Working Hours incr. [Hr.]	Cost to Dec. one hour [SL]	Working Hr. Dec.. (Hr)	Cost per month $[\mathrm{SL}\rfloor$
		D_{1}	(P_{t})	C_{1}	h_{1}	I_{t}	$\mathrm{C}_{\text {RT }}$	L_{RT}	$\mathrm{C}_{\text {OT }}$	$\mathrm{L}_{\text {OT }}$	C^{+}	Lt^{+}	C-	$L_{i}{ }^{\text {b }}$	(Z)
1	Feb	35000	35000	4.7	0.77	-	504.4	192	538	26.3					275494.2
2	Mar	40000	40000	4.7	0.77	-	504.4	208	538	41.4	5.76	31.1			315367.536
3	Apr	70375	105000	4.7	0.77	34625	504.4	208	538	416	5.76	374.6			851042.146
4	May	85400	105000	4.7	0.77	54225	504.4	208	538	416	5.76	-			863976.45
5	Jun	115625	105000	4.7	0.77	43600	504.4	208	538	416	5.76	-			855795.2
6	Jul	115700	105000	4.7	0.77	32900	504.4	208	538	416	5.76	-			847556.2
7	Aug	82600	105000	4.7	0.77	55300	504.4	208	538	416	5.76	-			864804.2
8	Sep	65500	105000	4.7	0.77	94800	504.4	208	538	416	5.76	-			895219.2
9	Oct	60500	35000	4.7	0.77	69300	504.4	208	-	-	5.76	-	25	416	323217.2
10	Nov	42400	35000	4.7	0.77	61900	504.4	208	-	-	5.76	-	-	-	317078.2
11	Dec	31450	-	4.7	0.77	30450	504.4	-	-	-	-		25	208	23679.5
12	Jan	22225.6	-	4.7	0.77	-	504.4	-	-	-	-				0
														Total	6433230

Then the objective function will be "minimize total cost":

$$
Z=\operatorname{Min}\left[\sum_{t=1}^{T} C_{t} P_{t}+h_{t} I_{t}+C_{t}^{\prime} P_{t}^{\prime}\right]
$$

Subjected to:
Demand Constraint: The number of units produced by source ' i ' in period ' j ' cannot be less than the demand during that period;

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} P_{i j} \geq \sum_{t=1}^{n} D_{t}
$$

Capacity Constraint: The number of units produced by source ' i ' in period ' j ' cannot exceed the capacity of sources during that period;

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} P_{i j} \leq \sum_{t=1}^{n} B_{t}
$$

Inventory constraint: Net inventory (NIt) at the end of any period is related to the ending inventory level of the prior period ($\mathrm{t}-$ 1) and the production (Pt) and demand rate (Dt) of the current period.

$$
\left\{\begin{array}{c}
\mathrm{NI}_{\mathrm{t}}=\mathrm{NI}_{\mathrm{t}-1}+\mathrm{P}_{\mathrm{t}}-\mathrm{D}_{\mathrm{t}} \\
\mathrm{NI}_{\mathrm{t}}=\mathrm{I}^{+}-\mathrm{I}^{-}
\end{array}\right.
$$

Variable constraints: Any of these variables should not have values less than zero.

$$
\mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}}^{\prime}, \mathrm{I}^{+}, \mathrm{I}^{-} \geq 0
$$

The solution of the transportation model is illustrated in table 4, at which rows present engaged production hours' month wise with production option in regular time and over time, and columns present demand periods. Last column contain information about production capacity in each production period. While the top right corner of each cell presents the unit production cost in SL per hour per month (including operational and inventory carrying cost). The solution of the transportation model is also presented in (figure 3). The total cost for the transportation model is calculated and found equal for (6782511.3 SL). The network diagram in (figure 3) reflects production in regular and over time monthwise with the inventory status. We can notice that:

- For regular production the engaged plant hours (208 hours) are almost constant from February to December. No production is carried out in January.
- Constant over time is engaged from April to September with minor over time in February and March.
- Demand of peak periods is met by carrying inventory, from April to January.
- The network diagram clearly represents how the demand is met, rather by current month's production or by inventory.

4.2 LINEAR PROGRAMMING MODEL

Among the numerous methods capable of developing mathematical models include
aggregate production planning. A literature survey reveals that linear programming (LP) is a conventionally used technique ${ }^{[5]}$.

The objective is to determine the optimal work force level, inventory level and amount to be produced during any production period, such that the cost of the production plan is minimized. We now describe a typical formulation of this variety of production planning problems:

Table 4. Solution by Transportation Technique (hours-wise).

Month	Prod. Time	Feb.	March	April	May	June	July
Feb.	Reg. Time	1294.5	1424	1553.5	1683	1812.5	1942
		192					
	Over Time	1328.1	1457.6	1587.1	1716.6	1846.1	1975.6
		26.3					
March	Reg. Time		1294.5	1424	1553.5	1683	1812.5
			208				
	Over Time		1328.1	1457.6	1587.1	1716.1	1846.1
			41.4				
April	Reg. Time			1294.5	1424	1553.5	1683
				208			
	Over Time			1328.1	1457.6	1587.1	1716.1
				230.7	185.3		
May	Reg. Time				1294.5	1424	1553.5
					208		
	Over Time				1328.1	1457.6	1587.1
					139.5	276.5	
June	Reg. Time					1294.5	1924
						208	
	Over Time					1328.1	1457.6
						237.1	178.9
July	Reg. Time						1294.5
							208
	Over Time						1328.1
							334.7
Aug.							
Sep.							
Oct.							
Nov.							
Dec.							
Jan.							
	Demand (Hrs.)	218.3	249.4	438.7	532.8	721.2	721.6

Table 4. Solution by Transportation Technique (hours-wise) (continued).

Fig. 3. Transportation Model Solution Network.

$$
Z=\operatorname{Min}\left[\sum_{t=1}^{T} C_{t} P_{t}+C_{R T} L_{R T}+\operatorname{CoT} L o t+h_{t} I_{t}+C_{l t} l_{t}+C^{\prime}{ }_{l t} l_{t}^{\prime}\right]
$$

Where:
$\mathrm{D}_{\mathrm{t}}=$ Forecasted demand in period ' t '.
$P_{t}=$ Quantity to be produced in period ' t '.
$\mathrm{C}_{\mathrm{t}}=$ Unit production cost in period ' t ' (excluding labor).
$I_{t}=$ On hand inventory at the end of period ' t '.
$\mathrm{h}_{\mathrm{t}}=$ Inventory carrying cost per unit held from period ' t ' to ' $t+1$ '.
$\mathrm{L}_{\mathrm{Rt}}=$ Regular time (Plant-hours) with fixed work-force level in period ' t '.
$\mathrm{C}_{\mathrm{Rt}}=$ Cost of a unit plant hour of regular time during period ' t '.
$\ell_{\mathrm{ot}}=$ Over time (Plant-hours) scheduled during period ' t '.
$\mathrm{C}_{\mathrm{ot}}=$ Cost of a unit Plant hour (with fixed workforce level).
$\ell_{t}=$ Increase in work-force level in Planthours from period ($\mathrm{t}-1$) to ' t '.
$\mathrm{C}_{\mathrm{lt}}=$ Cost to increase the one plant hour in period ' t '.
$\ell_{\mathrm{t}}=$ Decrease in work-force level in workhours from period ($\mathrm{t}-1$) to ' t '.
$\mathrm{C}_{\mathrm{lt}}=$ Cost to decrease the one plant hour in period ' t '
$\mathrm{T}=$ Time horizon for production planning.
Constrained to:

- Net inventory $\left(\mathrm{NI}_{\mathrm{t}}\right)$ at the end of any period is related to the ending inventory level of the prior period ($\mathrm{t}-1$) and the production $\left(\mathrm{P}_{\mathrm{t}}\right)$ and demand rate $\left(\mathrm{D}_{\mathrm{t}}\right)$ of the current period.

$$
\begin{gathered}
\mathrm{NI}_{\mathrm{t}}=\mathrm{NI}_{\mathrm{t}-1}+\mathrm{P}_{\mathrm{t}}-\mathrm{D}_{\mathrm{t}} \\
\mathrm{NI}_{\mathrm{t}}=\mathrm{I}^{+}-\mathrm{I}^{-}
\end{gathered}
$$

- The current period's regular time planthours (LRt) is related to the prior period's
plant-hours (LR, $\mathrm{t}-1$) and the rates of increasing (Lt) and decreasing (Lt') the work-force level during the current period.

$$
\begin{array}{r}
L_{R T}=L_{R, t-1}+l_{t}-l_{t}^{\prime} \\
L_{R t} \leq L_{R \max }
\end{array}
$$

- Over time (Lot) in any period is related to the period's scheduled production level 'LRt' and work force level.

$$
\begin{gathered}
L_{o t}-L_{u t}=m P_{t}-L_{R t} \\
L_{o t} \leq L_{o \text { max }}
\end{gathered}
$$

$\mathrm{L}_{u t}$ is the planned under utilization of the work force (i.e. against planned reduction in productivity). This occurs when the cost of such under utilization is less than the alternative costs of carrying additional inventory or temporary changing the work force level.
$\mathrm{m}=$ Number of Plant- hours required per unit of 'Pt' (Ltr.)

- Finally the non-negativity constraint is added.

$$
\mathrm{P}_{\mathrm{t}}, \mathrm{I}_{\mathrm{t}}, \mathrm{~L}_{\mathrm{RT}}, \mathrm{I}_{\mathrm{t}}^{+}, \mathrm{I}_{\mathrm{t}}^{-}, \ell_{\mathrm{ot}}, \quad \ell_{\mathrm{ut}} \geq 0
$$

LINGO $^{\text {TM }}$ computer software package is used to solve the LP model optimally.

The output of the model was (see appendix A):

Global optimal solution found at iteration: 62

Objective value (Total Cost): 6032497
The results obtained from the model solution are presented in a network diagram figure 4.

The main features of production plan of this solution are as below:

- Regular production level is almost constant (34969 Ltr) from period February to period December with slight change in January (22225.6 Ltr).
- Constant overtime is engaged only from period May to July. The duration of over time is under decline from August to November, and there is no overtime in December and January.
- Inventory is carried from 'April to June' only with maximum level 23325 Ltr.
- The situation of under time has not occurred.

4.3 Dynamic Programming Model

4.3.1 Mathematical Model

Dynamic Programming (DP) determines the optimum solution to an n-variable problem by decomposing it into n stages with each stage constituting a single-variable sub-problem. The computational advantage is that DP optimizes single-variable subproblems ${ }^{[8]}$. This model is applicable for situations when a single production system is used to produce mixed products with common denomination.

The product may be stored from one period to the next at a known cost per unit. This model also provides an opportunity to take into account the 'Setup Costs' from product to product, while neither LP model nor transportation model provide this option.

The problem is to decide the production level month wise to minimize the total relevant cost during planning horizon. The total cost incurred to produce the units in ' $\mathrm{t}^{\text {th }}$, period, including setup and production cost.

Fig. 4. Linear Program Model solution network
$\mathrm{K}_{\mathrm{t}}=\mathrm{A}_{\mathrm{t}}+\mathrm{C}_{\mathrm{t}} \mathrm{P}_{\mathrm{t}}$
$A_{t}=$ The setup cost in the ' t th' period.
$\mathrm{C}_{\mathrm{t}}=$ The unit production cost in the ' t th' period.
$\mathrm{P}_{\mathrm{t}}=$ Production in ' t th' period.
$\mathrm{B}_{\mathrm{t}}=$ Capacity in terms of production.
$\mathrm{Cn}-I=$ Cost to produce Dj units in the last productive period.
$\mathrm{I}_{\mathrm{t}}=$ Inventory level in period ' t '.
$\mathrm{h}_{\mathrm{t}}=$ Inventory holding cost from period t to ($\mathrm{t}+1$).
$\mathrm{n}=$ Total number of periods.
$\ell=$ Nonproductive periods.
$\mathrm{m}=$ Dependent variable on ' 1 ''.
$Z=\operatorname{Min}\left[\sum_{t=1}^{n-m} K_{t}+C_{n-1} \sum_{t=n}^{n-(m-1)} D_{t}+\sum_{t=n-m}^{n-1} I_{t} h_{t}\right]$
Where, $n-\ell \geq n-m$
Subject to $\mathrm{P}_{\mathrm{t}} \leq \mathrm{Bt}$.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{\mathrm{t}-1}+\mathrm{P}_{\mathrm{t}}-\mathrm{D}_{\mathrm{t}} \\
\mathrm{~B}_{\mathrm{t}} \geq 0, \quad \mathrm{I}_{\mathrm{t}}>0
\end{gathered}
$$

The pertinent data including set up costs is presented in table 5 .

4.3.2. SOLUTION BY DYNAMIC PROGRAMMING

After setting the problem inputs and the governing formula to minimize the cost, we consider 12 options for solving:

4.3.2.1. OPTION - 1

We consider the situation when there are zero inventories, it means that for every period we have to produce as per requirement (figure 5), and then the production cost will be:

$$
\begin{aligned}
& Z_{1}=\operatorname{Min}\left[\sum_{t=1}^{12} K_{t}+C 12 \sum_{12}^{13} D_{t}+\sum_{t=12}^{11} I_{t} h_{t}\right] \\
& \sum_{t=1}^{13} D_{t} \& \sum_{12}^{11} I_{t} h_{t}=0 \\
& \Rightarrow Z_{1}=\operatorname{Min}\left[\sum_{T=1}^{12} K_{t}\right]=\operatorname{Min}\left[\sum_{t=1}^{12}\left(A_{t}+C_{i} X_{t}\right)\right] \\
& X_{t}=D_{t} \\
& \Rightarrow Z 1=6917698.89 S L
\end{aligned}
$$

Figure 5. Graphical presentation of option No. 1.

4.3.2.2. OPTION -2

When the last period (12th) is nonproductive, so in (11th) period it has to
produce so much quantity that it could meet the requirement of last period also (figure 6). Then the production cost will be:

Figure 6. Graphical presentation of option No. 2.

$$
\begin{aligned}
& Z_{2}=\min \left[\sum_{t=1}^{11}\left(A_{t}+C_{t} D_{t}\right)+C_{11} D_{12}+I_{11} h_{11}\right] \\
& =\min \left[11 A+C_{11} \sum_{t=1}^{11} D_{t}+C_{11} D_{12}+h_{11} D_{12}\right] \\
& =\min [11(48090)+1311.3(4693.2)+(1311.3)(142.1)+131.13(142.1)] \\
& =528990+6154193.16+186335.73+16833.57 \\
& =6888152.46 S L
\end{aligned}
$$

4.3.2.3. OPTION-3

When we keep the last two periods ($11^{\text {th }}$ $\& 12^{\text {th }}$) non-productive (figure 7), then in the $\left(10^{\text {th }}\right)$ period it has to produce so much quantity that it can meet the requirements of remaining periods also, then the production cost will be: This procedure will continue in the same manner and we get the following results (table 6).

The option ' 3 ' is found economically best. This option suggests to meet the demand of periods from February to November by producing in each month
according to demand without carrying inventories and keep the plant shutdown in December and January (see Figure 7). Although the option is economically best, but practically not visible.

We can now collect the proposed solutions' costs in a table (table 7) and make comparison to choose the solution with minimum cost, noting that the objective of this research is to minimize costs with a practically feasible solution.

Figure 7. Graphical presentation of option No. 3.
Table 5. Data Transformation for Dynamic Programming

S.No	Months	Demand (D) (hr)	Cumulative Demand $\left(\Sigma D_{t}\right)$ (hr)	Reverse Cumulative Demand ($\sum \mathbf{D}_{\mathrm{t}}{ }^{\prime}$) (hr)	Setup Cost (A) $(\mathrm{SL} / \mathrm{m})$	Production Cost (C) (SL/hr)	Inventory Holding Cost (h) (SL/hr)	$. h x D_{t}^{\prime}$ (SL)	Reverse Commutation $\sum . h x \mathbf{D}_{\mathrm{t}}{ }^{\prime}$ (SL)
01	Feb.	218.3	218.3	4835.3	48090	1311.3	131.13	634052.9	3851838.8
02	March.	249.4	467.7	4617	48090	1311.3	131.13	605427.2	3217785.9
03	April.	438.7	906.4	4367.6	48090	1311.3	131.13	572723.4	2612358.7
04	May	532.8	1439.2	3928.9	48090	1311.3	131.13	515196.6	2039635.2
05	June	721.2	2160.4	3396.1	48090	1311.3	131.13	445330.6	1524438.7
06	July	721.6	2882	2674.9	48090	1311.3	131.13	350759.6	1079108.1
07	August	515.2	3397.2	1953.3	48090	1311.3	131.13	256136.3	728348.5
08	Sept.	408	3805.2	1438.1	48090	1311.3	131.13	188578	472212.19
09	Oct.	377.5	4182.7	1030.1	48090	1311.3	131.13	135077	283634.19
10	Nov.	314.4	4497.1	652.6	48090	1311.3	131.13	85575.42	148557.19
11	Dec.	196.1	4693.2	338.2	48090	1311.3	131.13	44348.2	62981.77
12	Jan.	142.1	4835.3	142.1	48090	1311.3	131.13	18633.57	18633.57
	Σ	4835.3							

Table 6. Cost comparison for options from Dynamic Programming Model.

Option No.	Cost Incurred (SL)	Option No.	Cost Incurred (SL)
1	$\mathbf{6 9 1 7 6 0 8}$	7	7357421
2	$\mathbf{6 8 8 8 1 5 2}$	8	7660086
3	$\mathbf{6 8 8 4 4 1 0}$	9	$\mathbf{8 0 5 7 1 9 6}$
4	$\mathbf{6 9 2 1 8 9 6}$	$\mathbf{1 0}$	$\mathbf{8 5 2 4 4 3 4}$
5	$\mathbf{7 0 0 8 8 8 3}$	$\mathbf{1 1}$	$\mathbf{9 0 4 9 0 6 7}$
6	$\mathbf{7 1 4 9 3 7 5}$	$\mathbf{1 2}$	$\mathbf{9 8 2 6 6 1 0}$

Table 7. Cost Comparison of Different
Techniques of Aggregate Planning.

Classical Production Planning $(\mathrm{SL} / \mathrm{Yr})$	Transporta tion Model $(\mathrm{SL} / \mathrm{Yr)}$	Linear Programm ing $(\mathrm{SL} / \mathrm{Yr)}$	Dynamic Program ming $(\mathrm{SL} / \mathrm{Yr)}$
6581613	6782511	$\underline{\mathbf{6 0 3 2 4 9 7}}$	6884410

5. CONCLUSION

It is concluded that for the production planning on aggregate basis, linear production model technique (solved by using LINGO ${ }^{\text {TM }}$ Program) is more appropriate for this company with 6.23% cost reduction among Classical Production Planning, where different seasonal products
can be aggregated using Liter as a common denominator (table 7). The objective function involves in minimizing direct pay roll, over time, hiring/ firing and inventory holding costs. A workable Master Production Schedule (MPS) can be prepared using aggregate production planning technique.

REFERENCES

1. Groover, M., "Automation, Production Systems, And Computer-Integrated Manufacturing", 3rd edition, Prentice Hall, NJ, USA, (2007).
2. Sultana, M. et al, "Aggregate Planning Using Transportation Method: A Case Study in Cable Industry", IJMVSC, Vol.5, No. 3, (2014).
3. Al-e-hashem, S.M.J. et al, "A multiobjective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty", Int. J. Production Economics, 134, (2011).
4. Ramezanian, R. et al, "An aggregate production planning model for two phase production systems: Solving with genetic algorithm and tabu search", Expert Systems with Applications, 39, (2012).
5. Wang, R., Fang, H., "Aggregate production planning with multiple objectives in a fuzzy environment", European Journal of Operational Research, 133, (2001).
6. Silva, CG. et al, "An interactive decision support system for an aggregate production planning model based on multiple criteria mixed integer linear programming", Omega, 34, (2006).
7. Jain, A., Palekar, U, "Aggregate production planning for a continuous reconfigurable manufacturing process", Computers \& Operations Research, 32, (2005).
8. Taha, H., "Operations Research", 8th edition, Prentice Hall, NJ, USA, (2007).

Received	2016/03/02	إيداع البحث
Accepted for Publ.	2016/10/03	للنشر

[^0]: Department of Production and Design Engineering, Faculty of Mechanical and Electrical Engineering, Damascus University.

